Heparin binding VEGF isoforms attenuate hyperoxic embryonic lung growth retardation via a FLK1-neuropilin-1-PKC dependent pathway
نویسندگان
چکیده
BACKGROUND Previous work in our laboratory demonstrated that hyperoxia suppressed the expression of vascular endothelial growth factor (VEGF) by the embryonic lung, leading to increased epithelial cell apoptosis and failure of explant airway growth and branching that was rescued by the addition of Vegf165. The aims of this study were to determine protective pathways by which VEGF isoforms attenuate hyperoxic lung growth retardation and to identify the target cell for VEGF action. METHODS Timed pregnant CD-1 or fetal liver kinase (FLK1)-eGFP lung explants cultured in 3% or 50% oxygen were treated ± Vegf121, VEGF164/Vegf165 or VEGF188 in the presence or absence of anti-rat neuropilin-1 (NRP1) antibody or GO6983 (protein kinase C (PKC) pan-inhibitor) and lung growth and branching quantified. Immunofluorescence studies were performed to determine apoptosis index and location of FLK1 phosphorylation and western blot studies of lung explants were performed to define the signaling pathways that mediate the protective effects of VEGF. RESULTS Heparin-binding VEGF isoforms (VEGF164/Vegf165 and VEGF188) but not Vegf121 selectively reduced epithelial apoptosis and partially rescued lung bud branching and growth. These protective effects required NRP1-dependent FLK1 activation in endothelial cells. Analysis of downstream signaling pathways demonstrated that the VEGF-mediated anti-apoptotic effects were dependent on PKC activation. CONCLUSIONS Vegf165 activates FLK1-NRP1 signaling in endothelial cells, leading to a PKC-dependent paracrine signal that in turn inhibits epithelial cell apoptosis.
منابع مشابه
Enhancement of vascular progenitor potential by protein kinase A through dual induction of Flk-1 and Neuropilin-1.
Fine tuning of vascular endothelial growth factor (VEGF) signaling is critical in endothelial cell (EC) differentiation and vascular development. Nevertheless, the system for regulating the sensitivity of VEGF signaling has remained unclear. Previously, we established an embryonic stem cell culture reproducing early vascular development using Flk1 (VEGF receptor-2)+ cells as common progenitors,...
متن کاملThe heparin-binding domain confers diverse functions of VEGF-A in development and disease: a structure-function study.
The longer splice isoforms of VEGF (vascular endothelial growth factor)-A, including VEGF(164(165)), contain a highly basic HBD (heparin-binding domain). This domain allows these isoforms to interact with and localize to the HS (heparan sulfate)-rich extracellular matrix, and bind to the co-receptor Nrp-1 (neuropilin-1). Heparin-binding VEGF-A isoforms are critical for survival: mice engineered...
متن کاملCoexpression of neuropilin-1, Flk1, and VEGF(164) in developing and mature mouse kidney glomeruli.
Neuropilin-1, a neuronal cell surface semaphorin III receptor protein important for axonal guidance in developing peripheral nervous system efferents, has also been identified as a vascular endothelial growth factor (VEGF) receptor on endothelial cells. To evaluate its expression in kidney, we carried out RT-PCR on newborn and adult total renal RNAs. A 403-bp product, which was predicted to be ...
متن کاملNeuropilin-2: a new molecular target for antiangiogenic and antitumor strategies.
JNCI | Editorials 81 Aggressive cancers grow progressively, invade locally, and metastasize through a multistep process that involves a malignant cell and a supportive environment ( 1 ). Tumor neovascularization critically contributes to tumor growth ( 2 ). Hence, there has been great interest in reducing cancer progression by shutting down the tumor blood supply ( 3 ). The antiangiogenic drugs...
متن کاملThe proliferative effect of vascular endothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta.
The heparin-binding protein vascular endothelial growth factor (VEGF) is a highly specific growth factor for endothelial cells. VEGF binds to specific tyrosine kinase receptors, which mediate intracellular signaling. We investigated 2 hypotheses: (1) VEGF affects intracellular calcium [Ca2+]i regulation and [Ca2+]i-dependent messenger systems; and (2) these mechanisms are important for VEGF's p...
متن کامل